How to Build Your Own PC

how-to-build-your-own-pc photo 1

Contents

  • How to Build Your Own PC
  • Memory, Video Card, and Storage
  • Power Supplies and Case
  • Putting It All Together
  • Finishing Touches

Computing has changed a lot in the last decade. For many, smartphones have become the go-to method of playing games, staying in touch with friends, and browsing the Web for answers to spur-of-the-moment trivia questions and viewing cat pictures. When you need something more powerful, or with a bigger screen, you might reach for a tablet. And if actual, real work calls, the laptop you'd use is probably svelte, light, and stylish. Traditional bulky desktops are increasingly rare, and when you see them, they're usually all-in-ones, or decked out with designs that are meant to be noticed. Let's face it, no one really builds their own desktop PC anymore, right?

Wrong, actually. DIY may not be all it used to be, but it's still a thriving sector of the PC industry, and one that any serious computer user—we mean the type of person who cares more about what a computer can do than how small an envelope it can slide into—should be aware of. Because, if you want the strongest, most adaptable, most upgradeable, and most personal computer you can possibly get, there's no way around it: You need to build it yourself.

By researching each individual component's capabilities and limitations, you can tailor your purchases to your exact needs now and in the future. And if your requirements or your mood change tomorrow, next week, next month, or next year, you can easily pull out and replace as few as one of the pieces, and your computer is perfect for you yet again. Nothing else gives you this much control or satisfaction. Yes, you'll have to sacrifice some—maybe a lot—of portability, but the result will be something you can totally and deeply call your own as you never will be able to with an unchangeable system designed and manufactured entirely by someone else.

Building your own PC is not necessarily an inexpensive or quick proposition. But if you're willing to devote the time and resources to the project, you will end up with the best possible computer on Earth for you—and that will make everything else worthwhile.

Shopping for Parts
The most difficult and time-consuming part of the PC-building process happens long before you start looking for the screwdriver. You can't even start thinking about assembling the individual components until you buy them—and that means doing a lot of investigating into the options (of which there are thousands) and, believe it or not, some serious soul-searching.

The first, and most important, thing to consider is: What do you want your PC to do? Are you looking for a really inexpensive system to put in the kids' room? Do you want a squat, console-like desktop that will fit right next to the TV that you can use for streaming media, or maybe as a Steam Machine? Is a dedicated work PC for your home office the goal? Or do you want the biggest, baddest build that can play the hottest new games without breaking a sweat?

We can't answer this question for you.  But once you've reached a decision, you'll have a better idea of what you need to buy and how much money you'll have to spend. And then you can get on to the actual shopping.

For research and shopping, we highly recommend using Newegg.com. It has a dizzyingly wide selection of components in every conceivable category and one of the Internet's most powerful search engines for narrowing down your precise needs. But feel free to use your favorite tool (or brick-and-mortar store).

The nuances of what components do, and how to best get them to serve your needs, is beyond the scope of this story. But the descriptions below of their functions and what you need to look for when shopping should give you a solid of idea of where to start in collecting all the parts you'll need for your PC.

Processor

how-to-build-your-own-pc photo 2

If you're building a gaming PC on a budget, you'll probably want to start off by choosing a video card (see below). But everyone else can start with the central processing unit (CPU), or processor, the "brain" of the computer that, well, processes all the instructions it receives from the software you run and the other components you have installed. Because of the considerable difference it will make in how well you run every program on your PC, paying particular attention to its capabilities is crucial. Here's what to look for:

  • Number of cores. Back when every CPU only contained one processing unit, or core, clock speed was the easiest way to measure performance. But practically every processor today is a multicore CPU, and the more cores a chip has, the more it can accomplish at once (if it's supported by the software). Most common are two- (dual-) and four- (quad-)core CPUs, though six- and eight-core CPUs are becoming more visible on the market.
  • Number of threads. Most processors today, particularly from Intel, can simultaneously operate two processing threads per core (Intel calls this technology hyperthreading), effectively doubling your core count. Because not every processor supports this, check that yours does if you expect to be running a lot of multithreaded applications.
  • Clock speed (operating frequency). This is the frequency at which each core in a CPU runs, or the number of cycles it is able to execute per second. The higher the number, the faster CPU will generally be per core. These days, clock speed is measured in gigahertz (GHz), or billions of cycles per second.
  • Cache (L2 or L3). A processor uses memory installed in the chip itself to store and speed up operations before utilizing external system RAM. This on-board memory is stored in one or more caches, which are identified L2 or L3. More powerful processors will be equipped with larger caches.
  • Socket type. CPUs come in different sizes, are identified by the kind of socket they plug into. (For example, Intel's most powerful current chips use the third revision of the LGA 2011 socket.) You'll need this information to determine what motherboard to buy (see the next section).
  • Manufacturing technology. Every year or two, processors get thinner and more power-efficient. Knowing a chip's manufacturing technology (measured in nanometers, or nm) will give you some insight into its capabilities, but is not strictly necessary.
  • Cooler. Most processors come with a fan rated for their specific speed and estimated heat output; unless you're planning to overclock your computer or otherwise put it through particularly traumatic paces, you probably don't need to buy another fan or liquid cooling system. (And for that reason, we're not going to dwell on the question here.) But if you do decide to buy a separate one, or if you choose a high-end CPU that doesn't come with its own fan, make sure that the cooler you get is designed for the family of processor you have or are planning to buy.

Motherboard

how-to-build-your-own-pc photo 3

If the CPU is a computer's brain, the motherboard is its nervous system. Most of your other components will plug into the motherboard, so the one that you use for your build needs to be exactly what you need now, and what you expect to need from it in the future. Here's what to look for:

  • Socket type. A motherboard's socket type must, must, must match that of the CPU you plan to use in it.
  • Form factor. Motherboards come in a range of sizes, or form factors, from the tiny Mini ITX to the enormous Extended ATX. For most full-size desktop builds you'll probably want either regular ATX or the somewhat smaller Micro ATX. The form factor you get will dramatically affect both the number of other components you're able to install and what kind of case you're able to install them in (see that section below for more details).
  • Memory. Be on the lookout for several different attributes of how your motherboard deals with memory. You need to know the memory type and standard, which are usually listed together. For example, if your motherboard supports DDR4 2133 memory, buy that. (Many motherboard manufacturers certify certain brands of memory for use with their boards; look up the motherboard on the Web to find out what's officially supported.) The number of memory slots tells you how many individual modules, or DIMMs, you can buy; you'll also be informed of the maximum memory supported, or the total amount of all the individual DIMMs taken together (such as 32 or 64GB). You may also see motherboards labeled as tri- or quad-channel, which signifies that you can expect a noticeable performance benefit if you fill the correct number of RAM slots. Note: Many times a motherboard will be listed as supporting a number of memory types with the designation "O.C." after them—this refers to memory that is overclocked. If you don't plan on overclocking your memory (which we don't recommend, unless you're an expert or fearless tweaker), you may safely ignore these numbers.
  • Expansion slots. The most common motherboard form factors, ATX and Micro ATX, will have between four and seven PCI Express (PCIe) slots, for adding expansion cards. These may use either the current top-end standard, PCIe 3.0, or the older (and slower) 2.0, with designations based on the size of the slots and the number of PCIe lanes they use. The longest slots are x16, though some that look identical may run at x8 or x4; in addition, there are visibly smaller x1 slots. On a Mini ITX motherboard, however, you should only expect one x16 slot.
  • Storage. SATA remains the most common interface for connecting internal storage devices to your motherboard. The newest version of the standard, SATA 3, supports data transfer rates of up to 6Gbps. You may also find some other interfaces; M.2, in which a flash-based storage module plugs directly into a thin slot on your motherboard, is becoming increasingly popular, for example. Regardless, you'll want to have enough of the right kind of ports for whatever storage you want to buy. (Learn more about that in the Storage section, below.)
  • Onboard technologies. Just about every motherboard will feature onboard stereo sound and Ethernet, most will include integrated Wi-Fi and/or Bluetooth, and many will also include ports for taking advantage of processors' integrated video capabilities. (You won't find the last on motherboards for higher-end processors, which are designed for use with discrete video cards, and you may ignore these ports on lower-end or midrange motherboards if you plan on installing a standalone video card.) It's worth checking the specs so that you don't forego something you really want.
  • Video card support. Think you may want to concoct an ultra-powerful gaming machine with more than one graphics card? Even if you have enough slots to hold multiple cards, you're out of luck if your motherboard isn't designed for use with either Nvidia's SLI technology or AMD's CrossFireX, so verify that first.

More stories